

Carbohydrate Research 270 (1995) 77-83

Note

Synthesis of (3'R)-3'-deoxy-3'-C-nitromethylthymidine

Yoshiaki Takahashi, Yoshinari Honda, Tsutomu Tsuchiya *

Institute of Bioorganic Chemistry, 1614 Ida, Nakahara-ku, Kawasaki 211, Japan

Received 22 September 1994; accepted 10 November 1994

Keywords: (3'R)-3'-Deoxy-3'-C-nitromethylthymidine; Anti-AIDS drug

After the discovery of 3'-azido-3'-deoxythymidine (AZT), an effective anti-AIDS drug, many structurally related nucleoside analogs targeted as inhibitors of HIV reverse transcriptase have been prepared. Among the thymidine derivatives reported, modified at the 3'-substituent supposedly modeled after the 3'-azide group of AZT, are the following ones as having the indicated groups at C-3': $-CH_2CH=CH_2$ [1], $-CH_2-C\equiv CH$ [2], $-CH_2-C\equiv N$ [2], $-C\equiv N$ [3–8], $-CH_2N_3$ [9,10], $-CH_2NH_2$ [10], $-NHC\equiv N$ [11], -NHCHO [11–13], $-NHCO_2CH_3$ [11], $-N\equiv C$ [6,11,12,14], $-N\equiv C\equiv O$ [15], $-NHCO-NH_2$ [15], $-NHCH_2C\equiv N$ [11], $-N\equiv C\equiv S$ [6,12], -OCHO [16], $-SC\equiv N$ [6,17], -SEt [17,18], and $-SCOCH_3$ [19]. None of them showed activity surpassing that of AZT. Here, we have undertaken the preparation of a related compound, (3'R)-3'-deoxy-3'-C-nitromethylthymidine (1).

In the first synthetic attempt, 3'-deoxy-3'-oxo-5'-O-tritylthymidine (3) [20–22] was treated with nitromethane anion, with the expectation of obtaining the corresponding 3'-nitromethyl derivative. However, the reaction only gave 3-oxoglycal (4) [6,20,22] quantitatively. Recently Chattopadhyaya and co-workers [23] prepared 1-[3-deoxy-3-C-(nitromethyl)-β-D-ribo-pentofuranosyl]thymine (2) and its 3'-epimer by reaction of a 1-[2-O-protected-3-deoxy-5-O-(4-monomethoxytrityl)-β-D-erythro-pentofuran-3-

^{*} Corresponding author.

ulosyl]thymine with nitromethane anion (to give the corresponding 3'-C-nitromethyl-D-xylo derivative), with subsequent dehydration [giving the 3'-(nitromethylene) derivative] and NaBH₄ reduction. Our lack of success is ascribed to the absence of a 2'-hydroxy group; in the 2'-deoxy structure, nitromethane anion may abstract the 2'-hydrogen preferentially to give the C-2' carbanion, which is then converted into glycal 4 with the loss of a thymine fragment.

We searched for an alternative route for 1 not utilizing a 3'-oxo compound as the starting material. Branchaud and co-workers reported [24–28] a C–C bond formation reaction using of cobaloxime-mediated radical alkyl-alkenyl or alkyl-nitroalkyl cross coupling. These authors transformed 3-deoxy-1,2;5,6-di-O-isopropylidene-3-iodo-D-glu-cofuranose into the Co^{III}(dmgH)₂py complex (dmgH = dimethylglyoxime monoanion) by treatment with [Co^I(dmgH)₂py]⁻ [24,27], and the complex was treated with nitromethane anion under photolysis. Cross coupling occurred [28] to give 3-deoxy-1,2;5,6-di-O-isopropylidene-3-C-(nitromethyl)-D-gluco-furanoses and -allo-furanoses (1:1, 48% isolated yield). We attempted to apply their procedure to our case.

3'-Deoxy-3'-iodothymidine (5) [29–31] was converted into its 5'-O-(tert-butyldimethylsilyl) derivative 6 and this was treated with Na⁺[Co¹(dmgH)₂py] according to the procedure of Branchaud and co-workers [24,27]. The orange-colored Co complex 7 was isolated in 30% yield after flash column chromatography, along with the 3'-eno 8, 2'-eno **9** [32,33], and 3'-deoxy derivatives **10** [34], in the ratio of 1:1.15:1.4 according to NMR analysis of the product mixture. When, however, this reaction was performed with the 5'-hydroxy compound 5, complex formation similar to 7 was minor, and a mixture of the known 3'-eno [35], 2'-eno [17,36], and 3'-deoxy [6,29,30,32,34-37] derivatives were the major products. The structure of 7 was determined by NMR analysis. High-field resonances of H-3' (δ 1.80 in CD₂Cl₂), and C-3' (δ 37.3, broad, in CDCl₃) in the ¹H and ¹³C NMR spectra, respectively, indicate that Co is attached to C-3'. The 3'S absolute configuration (that is, Co approaches C-3' from the α -face) was determined by ¹H NOE difference spectroscopy (saturation of H-6 showed 0.8% signal enhancement of H-3') as well as by phase-sensitive ¹H NOESY, where cross peaks were observed between H-6 and H-3', and between H-3' and H-5'a. All of the other functional groups present in 7 including pyridine, were confirmed by the ¹H and ¹³C NMR spectra.

Cross coupling of 7 with nitromethane anion was then carried out under visible light in 3:1 ethanol-water at $10-20^{\circ}$ C, essentially according to the method of Branchaud and co-workers [26,28]. The desired (3'R)-3'-(nitromethyl) derivative 11 was produced in 47% yield, together with 8 and 9 and without formation of the 3'S-isomer of 11. Exclusive formation of the 3'R-isomer 11 may be ascribed to the presence of the bulky thymine and *tert*-butyldimethylsilyl groups on the β -face. Raising or lowering the reaction temperature, or scale-up of the preparation (more than 100 mg at one time) markedly decreased the yield of 11. It is noteworthy that the 3'-deoxy compound 10 was not produced in this reaction. Final deprotection by acidic cleavage of the silyl group afforded 1.

Compound 1 was inactive in an in vitro anti-HIV test, using HIV-1 infected T4 lymphocytes (CEM cell line).

Experimental

General methods.—Melting points were determined on a Kofler block and are uncorrected. Optical rotations were determined with a Perkin-Elmer 241 polarimeter. IR spectra were recorded with a Jasco A-202 grating spectrophotometer. Mass spectra were recorded with a Jeol SX-102 spectrometer. NMR spectra (¹H at 500 MHz and ¹³C at 125.8 MHz) were recorded, unless otherwise stated, with a Bruker AMX 500 spectrometer, using Me₄Si as the internal reference. TLC was performed on Kieselgel 60 F₂₅₄ (Merck), and column chromatography on Wakogel C-200.

5'-O-(tert-Butyldimethylsilyl)-3'-deoxy-3'-iodothymidine (6).—To a solution of 5 (4.83 g, 13.7 mmol) in pyridine (48 mL) was added *tert*-butylchlorodimethylsilane (2.49 g, 16.5 mmol) and the solution was kept overnight at room temperature. Addition of water (1.5 mL) followed by evaporation gave a syrup. A chloroform extract was washed with water, dried (Na₂SO₄), and concentrated to a syrup that was purified on a short column of silica gel (4:1 CHCl₃–EtOAc) to give 6 as an amorphous solid (6.01 g, 94%). An analytical sample was prepared by crystallization from acetone—water to give needles, mp 133–134°C, [α]_D²² + 42° (c 1, CHCl₃). Anal. Calcd for C₁₆H₂₇IN₂O₄Si: C, 41.20; H, 5.84; I, 27.21; N, 6.01. Found: C, 41.37; H, 5.95; I, 26.91; N, 5.81.

Reaction of 6 with $Na^+[Co^I(dmgH), py]^-$ to prepare [(3'S)-5'-O-text-butyldimethylsilyl-3'-deoxythymidin-3'-yl]bis(dimethylglyoximato)(pyridine)cobalt (7).—A solution of CoCl₂·6H₂O (620 mg, 2.61 mmol) and dimethylglyoxime (610 mg, 5.25 mmol) in methanol (15 mL, predeoxygenated by Ar) was cooled to -10° C and Ar was bubbled through for 30 min. To the resulting suspension were added aq 50% NaOH (210 mg as net NaOH, 5.25 mmol) and pyridine (0.21 mL, 2.60 mmol). Aqueous NaBH₄ (1 mL, 50 mg, 1.32 mmol) was added to the resulting dark-brown suspension and the mixture was stirred under Ar for 30 min at the temperature. Subsequently 6 (1.01 g, 2.17 mmol) in MeOH (10 mL) was added to the dark-blue suspension, followed by aq NaBH₄ (1 mL, 50 mg) (after 1 h a similar amount of aq NaBH₄ was added) and the mixture was stirred for 2 h at room temperature. TLC (1:1 CHCl₃-EtOAc) of the mixture showed several spots at R_f 0.55 (8), 0.5 (9 and 10), 0.35 - 0.3 (slight), 0.15 (7), and 0 (cf. 6: R_f 0.65). Concentration of the mixture gave a residue that was extracted with CHCl3. The organic solution was washed with aq 1% pyridine, dried (Na₂SO₄), and concentrated. The yellow residue was subjected to flash-column chromatography [Wakogel C-300, 1:1 CHCl₃-EtOAc (by-products containing Co (R_f $0.35 \sim 0.3$) were eluted) $\rightarrow 3:1$ CHCl₃-acetone] to afford 7 as an orange solid (453 mg, 30%), together with a mixture of 8, 9, and 10 (402 mg, $\sim 55\%$). An analytical sample of 7 was prepared by reprecipitation from CHCl₃-hexane; $[\alpha]_D^{23} + 25^\circ$ (c 1, CHCl₃); FAB-MS: m/z 629 (M⁺ – C₅H₅N); ¹H NMR (CDCl₃): δ 0.04 and 0.05 [each s, 3 H, $(CH_3)_2Si$, 0.89 [s, 9 H, $(CH_3)_3CSi$], 1.11 (dt, 1 H, H-2' β), ~ 1.86 (dt, 1 H, H-3'; δ 1.80, dt in CD_2Cl_2), 1.87 (s, 3 H, CH_3 -5), 1.93 (ddd, 1 H, H-2' α), 2.17 and 2.22 (each s, 6 H, 2 CH₃ in Co complex), 3.41 (dd, 1 H, H-5'a), 3.71 (br s, 1 H, H-4'), 3.83 (dd, 1 H, H-5'b), 5.58 (dd, 1 H, H-1'), 7.30 (m, 2 H, 2 meta-H of pyridine), 7.62 (deformed q, 1 H, H-6), 7.71 (m, 1 H, para-H of pyridine), 8.03 (br s, 1 H, NH-3), 8.54 (m, 2 H, 2 ortho-H of pyridine), and 18.08 (sl. br s, 2 H, 2 OH in Co complex); $J_{1',2'\alpha}$ 5.5, $J_{1',2'\beta}$ 8,

 $J_{2'\alpha,2'\beta}$ 15.5, $J_{2'\alpha,3'}$ 2.5, $J_{2'\beta,3'}$ 8, $J_{3',4'} \sim 3$, $J_{4',5'a} \sim 3$, $J_{4',5'b}$ 2, and $J_{5'a,5'b}$ 11 Hz. The observation of NOE between H-6 and H-1' suggests that the thymine ring undergoes relatively free pseudorotation, although the probability of a *syn* relationship between H-6 and H-1' is expected to be low. Signal enhancement (%) by saturation of H-6 in CD_2Cl_2 : Si(CH₃)₂ (1.1), CH₃-5 (6.7), H-1' (1.3), H-2' β (3.7), H-3' (0.8), H-5'a (0.8), and H-5'b (0.6). ¹³C NMR (CDCl₃): δ -5.3 and -5.2 [(CH₃)₂Si], 12.2 and 12.3 (each 2 CH₃ in Co complex), 12.5 (CH₃-5), 18.6 [(CH₃)₃CSi], 26.0 [(CH₃)₃CSi], 37.3 (br, C-3'), 40.9 (C-2'), 65.8 (C-5'), 85.9 (C-1'), 86.1 (C-4'), 110.0 (C-5), 125.3 (2 *meta*-C in pyridine), 136.3 (C-6), 137.7 (*para*-C in pyridine), 150.0 (2 *ortho*-C in pyridine), 150.4 (C-2), 150.6 and 150.9 (each 2 CH₃C=N in Co complex), and 163.8 (C-4; confirmed by 1 H- 13 C HMBC between CH₃-5 and C-4). All signals were confirmed by 1 H- 13 C COSY. Anal. Calcd for C_{29} H₄₆CoN₇O₈Si: C, 49.21; H, 6.55; N, 13.85. Found: C, 49.18; H, 6.54; N, 13.76.

Separation of **8**, **9**, and **10**.—Column chromatography (silica gel 70 g) of the mixture of **8–10** (380 mg) just described, with 3:2 hexane–EtOAc, gave **8** as a solid (102 mg, 15%) and a mixture of **9** and **10**. In TLC (3:2 hexane–EtOAc), **8** had R_f 0.20, and **9** and **10**, R_f 0.15. Rechromatography of the latter mixture (silica gel, 80 g, with 5:1 toluene–CH₃CN) gave **9** as a solid (87.2 mg) and **10** as a solid (37.4 mg), plus a mixture of **9** and **10** (135 mg) [TLC (3:1 toluene–CH₃CN, three-time developments): **9**, R_f 0.4 and **10**, R_f 0.35].

(R)-1-(5-O-tert-Butyldimethylsilyl-2,3-dideoxy-pent-3-enofuranosyl)thymine (8).— Mp 87–88°C (CHCl₃-hexane), [α]²³ $_{\rm D}$ $_{\rm D}$ $_{\rm D}$ $_{\rm C}$ $_{\rm D}$ $_{\rm D}$

1-(5-O-tert-Butyldimethylsilyl-2,3-dideoxy-β-D-glycero-pent-2-enofuranosyl)thymine (9).—Mp 174–175°C (EtOAc-hexane), lit. [32] 169–171°C, [33] 173–175°C; [α]_D¹⁸ – 33° (c 1, CHCl₃); ¹H NMR (CDCl₃): δ 0.09 [s, 6 H, (CH₃)₂Si], 0.91 [s, 9 H, (CH₃)₃CSi], 1.90 (d, 3 H, CH₃-5), 3.85 (d, 2 H, 2 H-5'), 4.87 (ddq, 1 H, H-4'), 5.84 (ddd, 1 H, H-2'), 6.29 (dt, 1 H, H-3'), 6.97 (ddd, 1 H, H-1'), 7.33 (q, 1 H, H-6), and 8.38 (br s, 1 H, NH-3); $J_{\text{CH}_3-5,6}$ 1.2, $J_{1',2'}$ 1.5, $J_{1',3'}$ 2, $J_{1',4'}$ 4, $J_{2',3'}$ 6, $J_{2',4'}$ 2.5, $J_{3',4'}$ 2, and $J_{4',5'}$ 4 Hz. ¹³C NMR (CDCl₃): δ –5.3 and –5.2 [(CH₃)₂Si], 12.5 (CH₃-5), 18.6 [(CH₃)₃CSi], 26.0 [(CH₃)₃CSi], 64.7 (C-5'), 87.1 (C-4'), 89.8(C-1'), 110.8 (C-5), 126.4 (C-2'), 134.6 (C-3'; confirmed by ¹H–¹³C HMBC between H-5' and C-3'), 135.9 (C-6), 150.7 (C-2), and 163.6 (C-4; confirmed by ¹H–¹³C HMBC between CH₃-5 and C-4). Assignments of signals were further confirmed by ¹H–¹³C COSY. Anal. Calcd for C₁₆H₂₆N₂O₄Si: C, 56.78; H, 7.74; N, 8.27. Found: C, 57.07; H, 7.69; N, 8.45.

5'-O-tert-Butyldimethylsilyl-3'-deoxythymidine (10).—Mp 132–133°C (needles from EtOAc-hexane), lit. [34] 125–128°C; $[\alpha]_D^{23}$ + 7° (c 1, CHCl₃); ¹H NMR (CDCl₃): δ 0.11 and 0.12 [each s, 3 H, (CH₃)₂Si], 0.93 [s, 9 H, (CH₃)₃CSi], 1.92 (d, 3 H, CH₃-5), 1.95 ~ 2.03 (m, 3 H, H-2'a, 3'a, and 3'b), 2.31 ~ 2.42 (m, 1 H, H-2'b), 3.71 (dd, 1 H, H-5'a), 3.98 (dd, 1 H, H-5'b), 4.15 (m, 1 H, H-4'), 6.07 (unresolved dd, J 5 and 6.5 Hz,

1 H, H-1'), 7.57 (q, 1 H, H-6), and 8.30 (br s, 1 H, NH-3); $J_{\text{CH}_3\text{-}5,6}$ 1.2, $J_{4',5'a} = J_{4',5'b}$ 3, and $J_{5'a,5'b}$ 11.5 Hz. Anal. Calcd for $C_{16}H_{28}N_2O_4\text{Si}$: C, 56.44; H, 8.29; N, 8.23. Found: C, 56.69; H, 8.37; N, 8.48.

(3'R)-5'-O-tert-Butyldimethysilyl-3'-deoxy-3'-C-nitromethylthymidine (11).—To a suspension of 7 (51.0 mg, 72.1 μ mol) in ethanol-water (3:1, 3 mL, predeoxygenated by Ar) in Pyrex glass vessel was added nitromethane anion [prepared by mixing CH_3NO_2 (40 μ L) and 1 M NaOEt in EtOH (0.75 mL)] and the mixture was irradiated by 300 W visible light under an atmosphere of Ar with gentle stirring for 4 h at or near room temperature (10 ~ 20°C). TLC (1:1 CHCl₃-EtOAc) of the resulting orange solution showed spots at R_f 0.55 (8), 0.5 (9), 0.4 (11), and 0.3-0 (cf. 7: R_f 0.15). Neutralization with AcOH followed by concentration gave a residue that was extracted with 3:1 CHCl₃-EtOAc. The soluble products isolated were chromatographed with 3:1 CHCl₃-EtOAc to afford 11 as a solid (13.6 mg, 47%) and a mixture of 8 and 9 (4.9 mg, 20%, the ratio being 1:0.6 as judged by the ¹H NMR spectrum). Compound 11: mp 150–151°C (benzene), $[\alpha]_D^{22} + 6^\circ$ (c 0.5, CHCl₃); IR (KBr): 1380 (ν_s NO₂), 1550 (ν_{as} NO₂), and 1680 cm⁻¹ (C=O). ¹H NMR (CDCl₃): δ 0.12 and 0.13 [each s, 3 H, $(CH_3)_2Si$, 0.93 [s, 9 H, $(CH_3)_3CSi$], 1.93 (d, 3 H, CH_3 -5), 2.30 (dd, 2 H, 2 H-2'), 3.14 (apparent sextet, 1 H, H-3'), 3.78 (dd, 1 H, H-5'a), 3.91 (dt, 1 H, H-4'), 3.95 (dd, 1 H, H-5'b), 4.45 and 4.56 [each dd, 1 H, H-3"a, 3"b (CH₂NO₂-3')], 6.14 (t, 1 H, H-1'), 7.43 (deformed q, 1 H, H-6), and 8.98 (br s, 1 H, NH-3); $J_{1',2'}$ 6, $J_{2',3'}$ 7, $J_{3',4'}$ 6, $J_{3',3''a} = J_{3',3''b}$ 7.5, $J_{3''a,3''b}$ 13, $J_{4',5'a} = J_{4',5'b}$ 3, and $J_{5'a,5'b}$ 11 Hz. Signal enhancement (%) by saturation of H-3' (measured by a Bruker WM 250 spectrometer): H-6 (2.0), H-2' (4.6), H-5'a (1.4), H-3"a (2.6), and H-3"b (2.4). Anal. Calcd for $C_{17}H_{29}N_3O_6Si$: C, 51.11; H, 7.32; N, 10.52. Found: C, 51.38; H, 7.19; N, 10.27.

(3'R)-3'-Deoxy-3'-C-nitromethylthymidine (1).—A solution of 11 (100 mg) in aq 80% AcOH (1.0 mL) was heated for 3 h at 70°C. Concentration followed by chromatography (7:1 CHCl₃-MeOH) of the product gave 1 as a solid (62.5 mg, 88%), [α]_D²⁵ + 27° (c 0.5, H₂O); IR (KBr): 1380 (ν_s NO₂), 1550 (ν_a NO₂), and 1685 cm⁻¹ (C=O). ¹H NMR (D₂O): δ 1.92 (d, 3 H, CH₃-5), 2.45 (ddd, 1 H, H-2'a), 2.49 (ddd, 1 H, H-2'b), 3.15 (apparent double quintets, 1 H, H-3'), 3.78 (dd, 1 H, H-5'a), 3.93 (dd, 1 H, H-5'b), 4.05 (ddd, 1 H, H-4'), 4.73 (dd, 1 H, H-3"a), 4.78 (dd, 1 H, H-3"b), 6.18 (dd, 1 H, H-1'), and 7.77 (q, 1 H, H-6); $J_{\text{CH}_3-5,6}$ 1.1, $J_{1',2'a}$ 7, $J_{1',2'b}$ 4, $J_{2'a,2'b}$ 14, $J_{2'a,3'}$ 9, $J_{2'b,3'}$ 8.5, $J_{3',4'}$ 8, $J_{4',5'a}$ 4.5, $J_{4',5'b}$ 3, $J_{5'a,5'b}$ 13, $J_{3',3"a}$ 8, $J_{3',3"b}$ 6, and $J_{3"a,3"b}$ 14 Hz. ¹⁵C NMR (D₂O): δ 12.4 (CH₃-5), 36.1 (C-2'), 36.8 (C-3'), 61.9 (C-5'), 77.0 (C-3"), 83.8 (C-4'), 85.8 (C-1'), 112.0 (C-5), 138.5 (C-6), 152.5 (C-2), and 167.4 (C-4). Anal. Calcd for C₁₁H₁₅N₃O₆: C, 46.32; H, 5.30; N, 14.73. Found: C, 46.04; H, 5.47; N, 14.67.

Acknowledgment

Anti-HIV testing was carried out by the Anti-HIV Drug Testing System in the National Cancer Institute (Bethesda, Maryland), for which the authors express deep thanks.

References

- [1] C.K. Chu, B. Doboszewski, W. Schmidt, G.V. Ullas, and P. Van Roey, J. Org. Chem., 54 (1989) 2767-2769.
- [2] J. Fiandor, D.M. Huryn, B. Sluboski, L.J. Todaro, and S. Tam, Nucleosides Nucleotides, 8 (1989) 1107-1108; J. Fiandor and S.Y. Tam, Tetrahedron Lett., 31 (1990) 597-600.
- [3] A. Calvo-Mateo, M.-J. Camarasa, A. Díaz-Ortíz, and F.G. De las Heras, Tetrahedron Lett., 29 (1988) 941–944; A. Calvo-Mateo, M.-J. Camarasa, A. Díaz-Ortíz, F.G. De las Heras, and A. Alemany, Tetrahedron, 44 (1988) 4895–4903; M.-J. Camarasa, A. Díaz-Ortíz, A. Calvo-Mateo, F.G. De las Heras, J. Balzarini, and E. De Clercq, Nucleosides Nucleotides, 8 (1989) 837–840.
- [4] G.W.J. Fleet, J.C. Son, and A.E. Derome, Tetrahedron, 44 (1988) 625-636.
- [5] K.E.B. Parkes and K. Taylor, Tetrahedron Lett., 29 (1988) 2995-2996.
- [6] S.L. Schreiber and N. Ikemoto, Tetrahedron Lett., 29 (1988) 3211-3214.
- [7] M. Okabe, R.-C. Sun, S.Y.-K. Tam, L.J. Todaro, and D.L. Coffen, J. Org. Chem., 53 (1988) 4780-4786.
- [8] A. Matsuda, M. Satoh, H. Nakashima, N. Yamamoto, and T. Ueda, Heterocycles, 27 (1988) 2545-2548.
- [9] L. Svansson, I. Kvarnström, B. Classon, and B. Samuelsson, Nucleosides Nucleotides, 11 (1992) 1353–1366.
- [10] T.-S. Lin, J.-L. Zhu, G.E. Dutschman, Y.-C. Cheng, and W.H. Prusoff, J. Med. Chem., 36 (1993) 353-362.
- [11] M. Maillard, A. Faraj, F. Frappier, J.-C. Florent, D.S. Grierson, and C. Monneret, *Tetrahedron Lett.*, 30 (1989) 1955-1958.
- [12] A. Matsuda, M. Satoh, T. Ueda, H. Machida, and T. Sasaki, Nucleosides Nucleotides, 9 (1990) 587-597.
- [13] P. Wigerinck, A. Van Aerschot, G. Janssen, P. Claes, J. Balzarini, E. De Clercq, and P. Herdewijn, J. Med. Chem., 33 (1990) 868-873.
- [14] J. Hiebl, E. Zbiral, J. Balzarini, and E. De Clercq, J. Med. Chem., 33 (1990) 845-848.
- [15] D. Häbich, Synthesis, (1992) 358-360.
- [16] R. Kumar, E.E. Knaus, and L.I. Wiebe, Nucleosides Nucleotides, 11 (1992) 1219-1228.
- [17] P. Herdewijn, J. Balzarini, E. De Clercq, R. Pauwels, M. Baba, S. Broder, and H. Vanderhaeghe, J. Med. Chem., 30 (1987) 1270-1278.
- [18] A. Hampton, F. Kappler, and R.R. Chawla, J. Med. Chem., 22 (1979) 621-631.
- [19] P. Herdewijn, J. Balzarini, M. Baba, R. Pauwels, A. Van Aerschot, G. Janssen, and E. De Clercq, J. Med. Chem., 31 (1988) 2040–2048.
- [20] R.W. Binkley, D.G. Hehemann, and W.W. Binkley, Carbohydr. Res., 58 (1977) C10-C12; R.W. Binkley, D.G. Hehemann, and W.W. Binkley, J. Org. Chem., 43 (1978) 2573-2576.
- [21] F. Hansske and M.J. Robins, Tetrahedron Lett., 24 (1983) 1589–1592.
- [22] F. Hansske, D. Madej, and M.J. Robins, Tetrahedron, 40 (1984) 125-135.
- [23] N. Garg, N. Hossain, J. Plavec, and J. Chattopadhyaya, Tetrahedron, 50 (1994) 4167-4178.
- [24] B.P. Branchaud, M.S. Meier, and M.N. Malekzadeh, J. Org. Chem., 52 (1987) 212-217.
- [25] B.P. Branchaud, M.S. Meier, and Y. Choi, Tetrahedron Lett., 29 (1988) 167-170.
- [26] B.P. Branchaud and G.-X. Yu, Tetrahedron Lett., 29 (1988) 6545-6548.
- [27] B.P. Branchaud and M.S. Meier, J. Org. Chem., 54 (1989) 1320-1326.
- [28] B.P. Branchaud and G.-X. Yu, Tetrahedron Lett., 32 (1991) 3639-3642.
- [29] A.M. Michelson and A.R. Todd, J. Chem. Soc., (1955) 816-823.
- [30] K.E. Pfitzner and J.G. Moffatt, J. Org. Chem., 29 (1964) 1508-1511.
- [31] J.P.H. Verheyden and J.G. Moffatt, J. Org. Chem., 35 (1970) 2868-2877.
- [32] C.K. Chu, V.S. Bhadti, B. Doboszewski, Z.P. Gu, Y. Kosugi, K.C. Pullaiah, and P. Van Roey, J. Org. Chem., 54 (1989) 2217-2225.
- [33] K. Haraguchi, H. Tanaka, H. Maeda, Y. Itoh, S. Saito, and T. Miyasaka, J. Org. Chem., 56 (1991) 5401-5408.
- [34] M.-J. Camarasa, F.G. De las Heras, and M.J. Pérez-Pérez, Nucleosides Nucleotides, 9 (1990) 533-546.
- [35] J. Zemlicka, J.V. Freisler, R. Gasser, and J.P. Horwitz, J. Org. Chem., 38 (1973) 990-999.
- [36] J.P. Horwitz, J. Chua, M.A. Da Rooge, M. Noel, and I.L. Klundt, J. Org. Chem., 31 (1966) 205-211.
- [37] K. Agyei-Aye and D.C. Baker, Carbohydr. Res., 183 (1988) 261-275.